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Abstract. We present an exact solution for the one-dimensional lsing model in a random 
field. The distribution of field strengths is site independent, symmetric and  has a three-peak 
structure. The free energy is obtained for all finite temperatures. The low-temperature 
behat iour  is studied in detail. We find a n  expansion for the free energy in integer powers 
of temperature. The ground-state energy and  the zero-point entropq are calculated 
explicitly. The  specific heat is linear for low temperatures, in contradiction with mean-field 
theory. The  origin of an additional exponential parameter is discussed. 

1. Introduction 

In recent years considerable effort has been put into the study of the influence of 
quenched random fields on the Ising model (for reviews see [ l ] ) .  Exactly solvable 
models play an  important role in clarifying the behaviour of the random-field k i n g  
model ( R F I M ) .  Even in one dimension there exist exact solutions only for a few 
particular distributions of the random magnetic fields h,.  Derrida and co-workers [ 2 ]  
considered the symmetric binary distribution ( h ,  = f Hr). Thermodynamic properties 
and  the two-point correlation function had been evaluated by Grinstein and Mukamel 
[3] using a field distribution where h, are either plus or minus infinity or zero with 
certain probabilities. A more realistic distribution had been analysed by Nieuwen- 
huizen and  Luck [4]. For an exponential distribution of the random field they found 
an  exact solution and calculated the thermodynamic properties at any temperatures. 
In extending the investigations, the authors presented a calculation of the two-point 
correlation function [5] which has also been evaluated recently for a one-dimensional 
lattice gas model in a random potential at zero temperature [6]. 

In this paper we consider a related distribution of the random fields and analyse 
the thermodynamic behaviour using a method introduced by one of us [7,8]. Here, 
the free energy is expressed by a special function D ( u )  (see equation (2.6)). On the 
other hand, this function obeys an integral equation which can be replaced by a 
five-term recurrence relation with non-random coefficients. 

Setting 

h, = H,x,  ( 1 . l a )  
the distribution p ( x , )  of the dimensionless reduced fields x, has the following form: 

d x , )  = (1  -~ )S (x , ) - t (p /2 ) lx , le - " ' .  (1 . lb)  

U,> 0, -X < X, < CC 
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The strength H ,  of the random fields and the dilution probability p are two parameters 
of the model. The distribution reveals two maxima and a central peak which vanishes 
in the undiluted casep  = 1 ,  and mimics the diluted binary distribution h, = 0 (probability 
1 - p )  and h, = iH, (probability p/21. 

Nieuwenhuizen and Luck [4] have solved the problem for a distribution of the 
type ( l . l b ) ,  without the prefactor I x , ~  in the last term. 

The R F I M  with the more general distribution 

p ( x , )  = ( I  - p ) s ( x , ) + ( I . ~ , I 1 / v ! ) ( p / 2 ) e -  ',' I/ = 0, 1 , 2 . .  . (1 .2)  

had been studied in the framework of the mean-field approximation only [9]. For 
v + CO (1 .2)  becomes a diluted binary distribution. 

The paper is organised as follows. In  section 2 we present some general formalism. 
The solution of the problem is given in section 3. Section 4 is devoted to the analysis 
of the low-temperature behaviour of the free energy, the entropy and  the specific heat. 
Section 5 contains concluding remarks and  some generalisations. 

2. Generalities 

In this section we present the general formalism needed for the calculation of thermo- 
dynamics functions. 

periodic boundary conditions is given by 
The Hamiltonian for the one-dimensional 

N 4 

H = - J  1 u,+,u~ - 1 bp, 
! = I  , = I  

where the h, are independent random variables 
We restrict ourselves to the ferromagnetic case 

Ising model in a random field with 

with the probability distribution ( 1 . 1 ) .  
J > O .  

A common way to calculate the free energy is to use the transfer matrix method. 
Defining a general transfer matrix 

where the elements a, b, c and  d will be specified below (they should be positive only). 
The partition function of a finite chain having N sites is given by 

The quenched free energy of the model is equal to [ 2 ]  

1 
P F  = - lim -In Zh. = - lim 

N + x  N W - X  

= - lim ( In (d ,R ,  + c y ) ) h  
,-x 

where we have introduced R ,  = A , / D I ,  
brackets denote the average with respect to 

(2 .4)  

(note that DNTI = dNAN + c , D , ) .  The 
the random field distribution. 
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The R ,  obey the recurrence relation 

for all sites i. 
It can be shown [lo] that as i goes to infinity the distribution of the R,  has a well 

defined limit which is stationary in the sense that it is invariant under the substitution 
(2.5). 

Following the previous paper [4] we introduce a function of a complex variable U :  

(2.6) 

Here the bracket (. . . ) R  denotes the average with respect to the above-mentioned 
stationary distribution. The free energy F can be expressed as 

P F =  -(In d) , !  - ( D ( - c / d ) ) , , .  (2.7) 

D( U )  = (In( R - u ) ) ~ .  

For simplicity we have suppressed the index i. 
Rewriting (2.7) with the help of (2.5) and (2.6), one gets 

( D (  *) ) = D( U ) - (In( ( a /  d ) - U ) )  - (In d )  - PF. 
a - d u  j, 

Apart from a further transformation of the function D( U), the aim will be to derive a 
differential equation for the expression on the left-hand side in (2.8). As the result of 
the procedure we obtain two independent equations, namely the already mentioned 
differential equation and  (2.8). In this way we are able to eliminate the left-hand side 
of (2.8) and  after that we can calculate the free energy. 

For the further steps it is convenient to use the common representation of the 
transfer matrix 

An alternative approach will be given elsewhere [ 111. 
The recurrence relation (2.5), in terms of the elements in (2.9), is 

(2.10) 

To simplify the calculations we perform a variable transformation replacing D( U )  and 
R by E ( y )  and V, respectively: 

E ( Y )  =(In( V - Y ) ) ~  

V = exp(-PJ) (exp(2pJ)  - R-I ) .  

E ( Y )  -In Y - P F  = (E(cp(x, ~ 1 1 ) ~  

and  

(2.11) 

Using (2.8) and  (2.9) the function E ( y )  obeys the following equation: 

(2.12) 

with 
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cp(x, y )  satisfies the differential equation 

Introducing the abbreviations 

cosh p = w-’ exp(PJ)  w = (2 ~ i n h ( 2 P J ) ) ” ~  

we get 

c p ( O , ~ ) = 2 ~  coshp-w~’/y.  

In the non-random case p = O  it  results from (2.11) that 

E ( y )  = In( we-’l- y )  

and 

-PF,,,, = p +In w. 

Hence the random part of the free energy F, is given by 

F, = F - F,,,, . 

3. Solution 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

While the previous calculations are independent of the random field distribution we 
now consider the special distribution defined in ( 1 . 1 ) .  To this end it is convenient to 
introduce a new function Z: (y ) :  

(3.1) 

where in our case only the values v = O ,  1 are needed. 

we get 
Integrating (3.1) by parts using (2.13) and the differential operator L = a(y)a /ay ,  

z: = 2E,+ L(I,+ I ; )  1; = L( 1; + I ; )  (3.2) 

with E,= E(cp(0, y ) ) .  
Since (2.12) can be rewritten in the case of the distribution ( 1 . 1 )  as 

E ( y ) - I n y - P F = ( l - p ) E , + ( p / 2 ) 1 ;  (3.3) 

(1 - L y I ;  = 2( 1 + L‘)E”. (3.4) 

( I  - L 2 ) ‘ [ ~ ( y )  - In y - ( I  - p ) ~ , ]  = P F + ~ ( I  + L’)E,. 

we need only an equation for I : .  I t  can be derived directly from (3.2): 

Eliminating 1: in (3.3) by using (3.4),  we obtain 

(3.5) 
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A further transformation replaces r’ by z through 

w (  1 - z)ep 
y =  l - ze ’P  

and 

E ( y ) =  G(z) - ln (1  --e’@) 

(3.6) 

(3.7) 

leads to the relation 

(1 - L‘)’[ G ( z )  - (1 - p ) G ( ~ e - ’ ~ ) ]  - p ( l +  L‘)[G(ze-’”) -In( 1 - z ) ]  

= ~ ~ + p ( l - ~ ’ ) ’ ~ n ( l - z )  (3.8) 

with 

Eo = G ( z  e-’*) - In( 1 - z )  L ( Z )  = ( ~ / 2 ) ( 1 -  z’)a/az. (3.9) 

Since (3.8) does not completely determine the function G ( z )  we have to require certain 
analyticity properties for G(z )  as was discussed in the previous paper [4]. In particular 
it is possible to expand G ( z )  around z = 0: 

X 

G (  Z )  = G(0)  - C ckzk/ k. 
h = l  

(3.10) 

Inserting the last equation in (3.8) and comparing coefficients we get a five-term 
recurrence relation of the form 

-(A4/16)[(k+3)(k+2)(k+ l)C,, ,-4(k+ l ) ( k Z + 2 k + 2 ) C , , z + 2 k ( 3 k ’ + $ . ) C h  

-4( k - 1)( k 2  - 2k+  2)Ck-z + ( k  - 3)( k - 2 ) ( k -  1)Ch-4] 

+ ( h  ’/2)[ ( k  + 1 ) CA+? - 2kCh + ( k - 1) Ck..’] 

1 - exp( -2kp) 
k ( l - ( l  -p)exp(-2kp) 

Ck - (A‘/4){( k + 1) exp[-2(k + 2)p]ckt2 - - 

- 2 k  exp(-2kp)ck + ( k  - 1)ck-’ exp[-2(k - 2)p.I) (3.11) 

and 

4 A’ 
pA ’ 2 
- F, = 3 - 2C2 - c2 exp( - 4 p )  +- (1 -4C,+3C4) (3.12) 

where the coefficients c k  and CA are related by 

PCh c, = 
1 - (1  - p )  exp(-zkp)‘  (3.13) 

Note that the coefficients ck and CA go to zero for large k. Together with the 
boundary conditions CO = 1 and C, + 0 for k + a, equations (3.11) and (3.12) determine 
the free energy completely, but due to the more complicated random field distribution 
it cannot be expressed by a continued fraction expansion as in [4]. 

At low temperatures the number of coefficients needed to get a reasonable accuracy, 
increases with p - ’  - exp(2pJ).  Therefore the low-temperature behaviour will be dis- 
cussed separately in the next section. 
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4. Low-temperature behaviour 

To evaluate the low-temperature behaviour we proceed in the following manner. On 
one side the recurrence relation (3.11) is considered for k p  >> 1, i.e. k+W. In this case 
(3.11) can be converted in a differential equation. On the other side, the kp<< 1 
behaviour can be studied more easily from (3.10) directly. Both solutions have to 
reveal the same behaviour in the region 1 << k<< p - ' .  For large k, (3.11) is replaced by 
the fourth-order differential equation 

- c ""( y ) + 3 C"( y ) = U ( y 1 c ( y ) + [ U ( y 1 c ( y 1 I" (4.1) 

with y = A - '  In(2kp), where A = 2PHr,  and 

1 - exp(-exp A y )  
1 - (1 - p)exp( -exp A Y )  ' U ( Y )  = 

The asymptotic solutions can be written in the form 

C ( y  1 = -Ay + B + 2 exp(&y) - 28 exp( - A y )  (4.2a) 

for y + -CO, where a multiplicative factor has been left out. In the limit y .+ CO, one has 

(4.2b) 

with arbitrary coefficients A, B, E, F and 6. In  the region where k p  is small, one puts 
e-2& = 1 in (3.8). The change of variable 

(4.3) 

in terms of which the operator L is given by L( t )  = a,  = a / a t ,  leads to (after integration) 

C(j1) = ( E  + Fj) e-)' 

t = A - '  In[( 1 + z)(  1 - z ) - ' ]  

3A 3A exp(2At) -exp(At) 
+ A '  (exp(At)+ 1)' 2 exp(At)+l  + PFJIP .  (8: -3a , )G  =-- 

The solution of (4.4), in terms of the variable z, is 

l + z  
G( z)  = $n( 1 - z ' )  - (PFr/6pA ') In2 - 

1 - z  

+co-(c,/2)[( '+i)" 1 - 2  +(E)*] l + z  

(4.4) 

(4.5) 

with a = & / A  and integration coefficients cO and c l .  If one expands (4.5) with respect 
to z as in (3.10) the coefficients Ck can be expressed for large k as 

C Z k  = 1 +(2PFr/3pA2)[ln(4k)+ y]+cI [ (4k)" /T(a )+(4k) -" /T( -a ) ]+O(k- ' )  (4.6) 

where y denotes Euler's constant. 

Comparing (4.6) with (4.2) in terms of k 
Due to the symmetric field distribution only even coefficients occur in (4.6). 

C?, = B-(A/A)[ln(4ko)]+(4ku)" -6(4ku)-" (4.7) 
we find the random part of the free energy as a function of the ratio B / A ,  and the 
value of 6: 

r ( i+ff)  
J +  H , B / A +  Ty/2 r(i -.) exp( -2&J/ Hr), a=------. -3pHf 

F ,  = (4.8) 
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The ratio B / A  can be determined as a power series in temperature T using the Laplace 
transformation. In terms of the Laplace transform 

equation (4.1) is equivalent to 

(-z4+ 3z2 )0 (  z) + exp( zyo){ c”’+ ZC”+ ( z’ - 3) c’- z( z2 - 3) C},v, 

(4.9) 

ds  
= (1  + z’) D ( s  + z ) r (  1 - s/A)f(s/A) - I 2 r i s  

where f ( s )  is defined as in [4] by 

A s )  = p  c (1 - p ) ” ( n  + 
I720 

(4.11) 

For T = 0 (4.10) can be solved immediately because in this case ( 4 . 2 ~ )  is valid for all 
y in the interval 0 G y < CD and (4.2b) in the interval yo < y G 0, respectively. Inserting 
(4.2) in (4.9) we get 

1 - ( I  -zy0) exp(zyo) 
Z 2  

1 -exp(zyo)+21 -exp[(z+d3)yoI 
8 + Z  

+Bo Do(z) = A0 

1 -exP[(z-J3)Yol Eo F o  + 260 +-+- 
d 3 - Z  1 - 2  ( l - z ) 2  

(4.12) 

where the subscript zero at the coefficients indicates zero temperature. Using (4.12) 
together with (4.10) and taking into account that all terms proportional to exp(zyo) 
cancel, we can evaluate the coefficients 

with 

6” = e x p ( - 2 8 ~ / ~ , ) .  (4.13) 

In deriving (4.13) we have to close the integral contour in the right half plane. 
The pole structure of Do(z) has to be the same as those for finite temperatures 

since both originate from (4.2). Making for D(z)  an ansatz in the same form as in 
(4.12) with unknown coefficients A, B, E and F, and inserting the expression in (4.10), 
we obtain, after comparison of the coefficients, the ratio B / A  in the form 
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with 

4 + 3 J 5  - (4  - 3d3)8 , ,  
J 3 [ 2  +a+ ( 2  - &)SI,] CO = 

(f"(0) + ~ ' / 6 ) [ 2  +J3 - ( 2  - &)8,,] 
( 1 - 81,) [ 2  + J3 + ( 2  - 43) 81,]2 

U2 = 

and 

f I A ' ( o ) = p  c ( l - p ) " [ ~ n ( n + l ) ] " .  
,1 20 

From this we get with the help of (4.8) the free energy 

( 4 . 1 4 ~  ) 

(4.14 b )  

(4.15) 

F =  F,,+ F , T +  F,T>+.  . . (4.16) 

with 

3 p H : u ,  
- F, = S,, = 

2( J + H,c+o)' 

3pH;?a;! 
.+ 3 p H r ~ 2  - 2 F , = r , = l i m  C / T =  

T - 0  2 ( J +  H,u,)- 2 ( J +  H J T , ] ) ~ '  

( 4 . 1 7 ~ )  

(4.17b) 

( 4 . 1 7 ~ )  

Let us remark that the present method can be used to calculate the free energy to an  
arbitrary order in T [4,5]. However, the coefficients d o  not only depend on the function 
j ( k )  (4.15). There appears, beginning at the order T 3 ,  a class of new functions g defined 
by 

(4.18) 

where P(n) are polynomials in n. 
Now we want to discuss the physical contents of (4.17) and compare the results 

with those obtained in [4] and [9]. As a general feature in our model, we find for the 
ground-state energy U,, the zero-point entropy So and the specific heat amplitude To,  
a dependence on an  exponential term 6,) = exp( -2&J/ H , )  via the coefficients U,  in 
(4.14). Its occurrence is unexpected because it was not present in case o f the  distribution 
(1 .2)  with v = 0 solved in [4]. Its origin is discussed below. 

The part of the ground-state energy which is due  to the randomness ( U,, = U, + J )  
tends to - 2 p H ,  if H,>> J. In this strong-field limit every spin which feels a non-zero 
field is aligned with it and  we have Ull- -(lh,l) ,  which holds for all random field 
distributions. 

The zero-point entropy So is found to be non-zero in any diluted case due to the 
sequences of n successive vanishing random fields: h ,  = h z  = . . . = h, = 0 while the 
adjacent ones h,  and h,,, are antiparallel and  large enough. This causes a degeneracy 
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because of the n + l  possible locations for the domain walls and a corresponding 
entropy proportional to In( n + 1). For Hr >> J the probability of such a random field 
configuration is just given by p'( 1 - p) " ,  and one finds So = pf'(0)/2, in agreement with 
our results. 

In the very dilute case p << 1 the zero-point entropy and the specific heat amplitude 
show logarithmic singularities. Replacing (4.15) for p + 0 by [4] 

f ' " ' ( O ) = / I n p l " [ l + n y l l n p + .  . . ]  (4.19) 

leads to 

(4.20) 

(4.21) 

In  case of strong disorder ( p  + 1 )  one finds a linear vanishing zero-point entropy 

(4.22) 

but a finite specific heat amplitude 

(4.23) 

Comparing these results with those obtained in [4], one observes, apart from prefactors, 
the same asymptotic behaviour given in (4.20)-(4.22) and a similar behaviour for U,, 
and So (4.17). The main difference arises for the specific heat amplitude To at p = 1 
(4.23). The linear behaviour To-H, '  in [4] for a large H,/J ratio is changed into 
To- H;? due to the additional factor ( 1  - &)). 

Now we want to discuss the occurrence of the factor So in more detail. To this 
end we refer to a paper by Derrida and Hilhorst [12] in which the authors have 
obtained the singular behaviour of the free energy of a one-dimensional random system 
in the form F (  E )  = C E ' ~ *  for E + 0 and with E'= exp( -2J/ TI .  It was assumed that the 
random field distribution fulfils the conditions (A,/ T )  > 0 and (exp( -2h,/ T ) )  > 1 .  The 
exponent cy* is given by the positive root of 

(exp( -2h,cy/ T I )  = 1. (4.24) 

Such an equation is already known for random matrix products (see [ 121 and references 
therein), the distribution of a random variable z = 1 + x ,  + x , x 2 + .  , . [ 131 where the x, 
are independent distributed random variables, and  also for an  asymmetric random 
field distribution discussed in [4]. 

Applying (4.24) to our distribution leads to a fourth-order equation for cy with the 
formal solutions 

cy ,=a2=o a )  = -a4 = & / A  (A = 2/3H,). 

Here c y ,  and c y 2  vanish because our distribution of random fields is symmetric. Con- 
sequently, for large J we d o  not find an exponential decay, but an algebraic one [4]. 
Nevertheless, the roots cy7 and a4 show up in our calculations in the form 

E ' ' ' ~ '  = exp(-2J3  J /  H,) = so 
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which is exactly the exponential term obtained in our solution. (Note that for example 
U, (4.146) can be expressed as U ,  = f ’ ( O )  tanh2[ln(2+&)+&J/H,] and both 
exponents cy3 and a4 occur.) 

We see that in our case not only with the other cy from 
the formal solution of (4.24), e.g. in (4.5)-(4.8) where the evaluated exponent cy refers 
to cy3 and cy4, respectively. This can be understood because in our procedure (4.24) 
is enclosed in an implicit form. For that reason we consider the characteristic equation 
of (3.24) in the non-random case ( I :  = 2Eo). It is easy to check that it coincides with 
the above-mentioned fourth-order equation for cy. 

In case of a random field distribution (1.2) with v > 1 there are similar exponential 
terms which will be discussed elsewhere [ 113. Their precise role is still not understood. 

is present but also 

5. Conclusions 

Here we have presented an exact solution of a one-dimensional Ising model in a 
symmetric continuously varying random field with a three-peak structure. The paper 
is an extension of a previous one [4] with a simpler random field distribution which 
allows a representation of the free energy by a continued fraction expansion. In our 
case the free energy is determined by the five-term recurrence relations (3.1 1) and 
(3.12) which can be solved numerically at finite temperatures. The low-temperature 
limit can be studied explicitly using a more refined analysis of the corresponding 
differential equations (3.8) and (4.1). Instead of an exclusive exponential temperature 
dependence in the pure case we find an integer power-law behaviour for the free energy 
in terms of T. The zero-point entropy remains finite for every dilute case 0 < p  < 1. 
The specific heat behaves linearly in temperature whenever disorder is present. 

We can compare this linear behaviour of the specific heat with predictions from 
mean-field theory. Schneider and Pytte [14] have shown that a mean-field theory is 
defined in replacing our Hamiltonian (2.1) by 

where M is the magnetisation per spin. The free energy per spin is given by 

FvF= HMz- T(ln2cosh(2PJM+ph,))  (5.2) 

where brackets denote the average with respect to the distribution of random fields, 
and the minimum with respect to M has to be taken. For symmetrical distributions 
in one dimension, it is natural to assume that M = 0 gives the optimum. Hence, one 
is dealing with independent spins in a random field. For the distributions (1.2) the 
specific heat follows for low temperatures as 

For U = 0 it behaves linearly, in accordance with the calculations in [4]. For the present 
situation, v = 1, (5.3) deviates qualitatively from our exact result (4.17c), which shows 
a linear specific heat. Also for other values of Y we expect a linear behaviour, in 
contradiction with (5.3). 

The singular behaviour of the zero-point entropy and the specific heat amplitude 
for p + 0 or p + 1, respectively, is comparable to those obtained in [4], with the exception 



Exact solutions for  Ising chains in a randomjeld 5107 

of the specific heat at p = 1 which shows a quadratic decay with increasing ratio Hr/ J. 
This is caused by an additional term 1 - S o  in (4.13), which shows up in the considered 
thermodynamic functions. The occurrence of the parameter 8, is discussed in connec- 
tion with a prediction made by Derrida and Hilhorst [12] concerning a distribution- 
dependent exponent a (4.24). A better understanding of the role of the Derrida- 
Hilhorst roots in random field Ising chains is desirable. 

Let us finally mention that our method can also be applied to study the more 
general random field distribution (1.2) with U >  1. Although some relations (see for 
instance (3.2)) are written for the general distribution, the concrete verification of the 
low-temperature behaviour and other properties of the free energy are rather difficult, 
and will be discussed elsewhere [ 111. 
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